Contents

1	ntroduction	1
2	General features of corrugated-steel web	3
2.1	History of research and development	3
2.1.1	Development in France	
2.1.2	Development in Japan	7
2.2	Primary components	11
2.2.1	Corrugated-steel web	
2.2.2	External tendons	
2.2.3	Deviators	44
2.3	Durability	12
2.3.1	Sealing of embedded joints	12
2.3.2	Fatigue performance at joint with upper slabs	13
2.4	Advantages of corrugated-steel web	13
2.4.1	Light in weight	13
2.4.2	Accordion effect	13
2.4.3	Elimination of stiffeners	14
3	Design approach	15
3.1	General_	15
3.1.1	Design principle	
3.1.2	Structural analysis	15
3.2	Serviceability-limit states	18
3.2.1	Bending moments and longitudinal forces	18
3.2.2	Shear forces	19
3.2.3	Torsional moment	19
3.3	Fatigue-limit states	19
3.4	Ultimate-limit states	20
3.4.1	Bending moments and longitudinal forces	20
3.4.2	Shear forces	21
3.5	Design of dowel	21
3.5.1	General	21
3.5.2	Connection types	21
3.5.3	Design sectional force of shear connectors	22
3.6	Corrugated-steel-web design	23
3.7	Special attention	
4 :	Structural components	25
4.1	Joints between corrugated-steel plates and concrete	
4.1.1	Joints on upper and lower concrete slabs	25

4.1.2 Joints on support cross beams	26	
4.2 Joints between corrugated-steel plates	27	
4.2.1 Varieties of joints	27	
4.2.2 Scallops at ends of fillet welds	27	
4.3 External tendon deviators and partition walls	29	
5 Construction	31	
5.1 General_	31	
5.2 Formwork and corrugated-web placement		
5.3 Concrete placement		
5.4 Processing of corrugated-steel plates	34	
5.5 Corrosion protection for corrugated-steel plates		
5.6 Field welding of corrugated-steel plates		
5.7 Handling of corrugated-steel plates	35	
5.8 Erection	35	
6 Examples of corrugated-steel-web bridge construction	36	
6.1 Applications for conventional structures	36	
6.1.1 Examples in France		
6.1.2 Example in Germany		
6.1.3 Examples in Japan		
6.2 Applications for cable-supported structures		
6.2.1 Himi Bridge	67	
6.2.2 Yahagigawa Bridge	74	
6.3 A different approach - Meaux Viaduct	80	
6.3.1 Layout	80	
6.3.2 Design of the structure	84	
6.3.3 Construction	87	
6.4 Selected data from corrugated-steel-web bridge projects	88	
6.4.1 Omi-Odori Bridge	88	
6.4.2 Katsurashima Viaduct	90	
6.4.3 Kinugawa Bridge	92	
6.4.4 Shimoda Bridge	94	
6.4.5 Sugitani Bridge	96	
7 Summary	99	
8 References	101	
Appendix A: Design shear strength of corrugated-steel web		
Appendix B: Selected technical data		
• •		