

RESULTS OF BLIND COMPETITION

Simulation of three-point bending of beams with conventional reinforcement and fibres

1. Introduction

This document presents the results of the blind competition carried out within the scope of the fib Working Group WG 2.4.2 *Modelling of Fibre Reinforced Concrete Structures*. The object of the benchmark was to predict the behaviour of a T cross section steel fibre reinforced concrete beam with conventional longitudinal (R/SFRC) and without conventional shear reinforcement in the shear span where the beam is predicted to fail in shear.

This benchmark and the rules of the competition were announced at the end of the year 2019. Information about the properties of the materials at the age of 7 and 14 days was communicated in the last week of January and first week of February 2020. A total of thirty six participants submitted the results of numerical simulations. The 9th of March experiments were conducted on two twin beams for the appraisal of the predictive performance of the submitted simulation proposals. The experiments were transmitted in real time through a youTube channel. In the weeks following to that, the experimental results and those of the participants have been analysed.

The following sections present the name of participants, the experimental results, numerical results and performance of the numerical predictions.

2. Name of participants

Table 1 includes a list of the participants and their affiliation, sorted by alphabetical order.

Name of the participants	Affiliation(s)		
Alejandro Nogales ¹ , Nikola	¹ Smart Engineering Ltd, UPC Spin-Off, Barcelona, Spain		
Tošić ² , Albert de la Fuente ²	² Civil and Environmental Engineering Department,		
	Universitat Politècnica de Catalunya, Barcelona, Spain		
Alexander Kagermanov	¹ University of Applied Science Rapperswil, Switzerland		
Antonio A. Cristian	¹ Technical University of Civil Engineering of Bucharest		
Barzin Mobasher ¹ , Devansh	¹ Material Model ASU Team		
Deepak Patel ¹ , Chidchanok			
Pleesudjai ¹			
Camille A. Issa ¹ , Najwa Hani ¹	¹ Lebanese American University		
Christoph Betschoga ¹ , Michael	¹ Institute of Structural Concrete, Graz University of		
Huß, Yolcu Sever, Nguyen Duc	Technology, Graz, Austria		
Tung			
Dong Xiang ¹	¹ Tongji University, China		
George Markou ¹	¹ Faculty of Engineering, University of Pretoria, Hatfield,		
	South Africa		
Gerrit E. Neu ¹ , Michael	¹ Institute for Structural Mechanics, Ruhr University of		
Hofmann ¹ , Günther Meschke ¹	Bochum, Germany		

Table 1. List of participants and affiliation, sorted by alphabetical order

Gili I. Sherzer ¹ Younes F	¹ University of Toronto, Canada		
Alghalandis ¹ Karl Potorson ¹	Oniversity of foronto, canada		
Ciovanni Crassolli ¹			
Giulia Zani ¹ Mattao	10 alitaanica di Milana, Danartmant of Civil and		
Giulio Zani , Matteo	Politecnico di Milano, Department of Civil and		
	Environmental Engineering		
Hiroki Ogura ⁺ , Minour	¹ Shimizu Corporation, Japan		
Kunieda ²	² Gifu University, Japan		
Inkyu Rhee ¹ , Jae-Min Kim ¹	¹ Department of Civil Engineering, Chonnam National		
	University, Gwangju, South Korea		
Jaime Planas ¹ , Beatriz Sanz ¹ ,	¹ Dep. Ciencia de Materiales, ETS de Ingenieros de		
José M. Sancho ²	Caminos, Canales y Puertos, Universidad Politécnica de		
	Madrid, Madrid, Spain		
	² Dep. Estructuras de Edificación, ETS Arquitectura,		
	Universidad Politécnica de Madrid, Madrid, Spain		
Jan Červenka ¹	¹ Červenka Consulting		
Jia-Qi Yang ¹ , Zhiyuan Li ¹ ,	¹ Department of Civil Engineering, Tsinghua University,		
Peizhao Zhou ¹ , Chongfeng Xie ¹	Beijing, China		
José Joaquín Ortega ¹	Universidad de Castilla-La Mancha, Spain		
Josef Landler ¹ , Sören	¹ Technical University of Munich, Department of Civil, Geo		
Faustmann ¹ , Oliver Fischer ¹	and Environmental Engineering, Munich, Germany		
Lex van der Meer ¹ . Kris	¹ ABT. The Netherlands		
Riemens ¹ . Srinidhi Ramadas ¹ .			
Yue Dai ¹			
Luís M P. Matos ¹ António V	¹ Department of Civil Engineering University of Minho		
Gouveia ²	² Department of Civil Engineering, Polytechnic Institute of		
Gouveia	Viseu		
Marcos A da Silva ¹ Luiz C de	¹ Universidade Estadual de Campinas, School of Civil		
Almeida ¹ Leandro Mouta	Engineering Architecture and Urbanism Laboratório de		
Trautwein ¹	Modelagem Estructural e Monitoração, Campinas-SP		
Hudewein	Brazil		
Mário Pimentel ¹ Rui Valente ¹	¹ University of Porto, Faculty of Engineering, Porto		
Warlo Fillenter, Karvalente	Portugal		
Mladena Lukovic ¹ Dawei Gu ¹	¹ TLL Delft The Netherlands		
Frik Schlangon ¹	To Dent, the Netherlands		
	14 million Colonna International Caina Format		
	² Chrysternel Engineering Department, Cairo, Egypt		
Salem	-Structural Engineering Department, Cairo University,		
Na sela la stati	Egypt		
Osvaldo L. Manzoll ² , Luis A.G.	-Sao Paulo State University, Department of Civil		
Bitencourt Jr. ² , Yasmin 1.	Engineering, Bauru-SP, Brazil		
Trindade ²	² University of São Paulo, Department of Structural and		
	Geotechnical Engineering, São Paulo-SP, Brazil		
Peter K. Juhasz ¹ , Peter Schaul ¹	¹ JPK Static Ltd, Department of Construction Materials and		
	Technologies, Budapest University of Technology and		
	Economics		
Pim van der Aa ¹ , Ab van den	¹ Diana FEA BV		
Bos ¹			
Rafael A. Sanabria ¹	¹ Universidade Estadual de Campinas, Laboratorio de		
	Modelagem Estrutural e Monitoração, Brazil		
Rutger Vrijdaghs ¹	¹ Department of Civil Engineering, KU Leuven, Belgium		
Saeid Mehrpay ¹ , Tamon Ueda ²	¹ Hokkaido University, Japan		

	² Shenzhen University, PR China		
Shen Le ^{1,2} , Ding Miao ^{1,2} , Yang	¹ School of Civil Engineering, Chongquing, China		
B0 ^{1,2}	² Key Laboratory of New Technology for Construction of		
	Cities in Mountain Area, Chongquing University, China		
Song Jin ¹ , Yating Tai ¹ , Yun	¹ College of Civil and Transportation Engineering, Hohai		
Tian ¹ , Chenghuan Lin ¹ , Xiyao	University		
Zhao ¹ , Meng Zhang ¹ , Qingqing			
Wu ¹ , Jikai Zhou ¹			
Tiago Valente ¹ , Inês Costa ¹ ,	¹ CiviTest-Pesquisa de Novos Materiais para a Engenharia		
Lúcio Lourenço ¹ , Christoph de	Civil, Lda., Vila Nova de Famalicão, Portugal		
Sousa ¹ , Felipe Melo ¹ , Cristina			
Frazão ¹			
Zhongyue Tracy Zhang ¹ , Frank	¹ University of Toronto, Canada		
J. Vecchio ¹			
Ziyang Zhang ¹ , Linyou Zhang ¹ ,	¹ Department of Bridge Engineering, Southwest Jiaotong		
Weiting Chen ¹ , Yong Li ¹	University, Chengdu, China		

3. Experimental results

Two beams were subjected to eccentric bending. Figure 1 displays the experimental results. Unfortunately, the record of strain of the first beam was lost.

Figure 1. Experimental results and average curves of load versus deflection (a) and strain versus deflection (b)

4. Results of the simulations

Figure 2 shows the experimental average, numerical envelope and numerical predictions of all participants for the curves of load versus deflection and strain versus deflection. The results are displayed up to the deflection corresponding to the end of the experiments. Note that the curves of strain of Participants 13 and 34 have been excluded from the graphic, as they are out of the range of results of the remaining participants.

Figure 2. Experimental results, numerical envelope and numerical predictions of all participants of load versus deflection (a) and strain versus deflection (b)

5. Predictive performance of the simulations

For each participant, the predictive performance was computed after performing the tests, according to the following:

1. The experimental average was computed from the results of the two beams (see corresponding paragraph).

2. The numerical results of each participant were compared with the experimental average, up to the experimental peak load.

3. The error Err_F of the numerical prediction was calculated as:

$$Err_{F} = \frac{1}{n} \sum_{\kappa} \left(\frac{|F_{exp}^{\kappa} - F_{num}^{\kappa}|}{F_{exp}^{\kappa}} \right)$$
(1)

where κ corresponds to the records, F_{exp}^{κ} is the experimental value of load for record κ , F_{num}^{κ} the numerical value, and n are the number of scan readings. An equivalent equation is used to compute the error of the strain Err_{ε} .

4. The relative error of the maximum load $\Delta F/F$ was computed as:

$$\Delta F/F = \frac{|F_{exp}^{max} - F_{num}^{max}|}{F_{exp}^{max}}$$
(2)

where F_{exp}^{max} is the maximum load of the average of experiments and F_{num}^{max} is the maximum load of the numerical prediction. A similar expression is used to compute the relative error of the strain $\Delta \varepsilon / \varepsilon$, considering the strain corresponding to the maximum load of experiments, $\varepsilon_{F_{exp}^{max}}$, and strain corresponding to the maximum load of the numerical prediction, $\varepsilon_{F_{num}^{max}}$, and the relative error of the deflection $\Delta u/u$, considering the corresponding $u_{F_{exp}^{max}}$ and $u_{F_{num}^{max}}$.

5. The score of each participant was calculated considering the error of the numerical curves with respect to the average of the experiments and the relative errors of the maximum load, strain and deflection corresponding to the maximum load, according to the following expression:

$$Score = 0.35 \Delta F/F + 0.15 Err_F + 0.25 \Delta \varepsilon/\varepsilon + 0.1 Err_{\varepsilon} + 0.15 \Delta u/u$$
(3)

Table 2 includes the predictive performance of the simulations of the 36 participants. Note that the order of participants is random and does not coincide with that of that of Table 1, for the sake of confidentiality. One of the participants presented results for two models, marked as a and b.

Partici-	Rel.	ERR	Rel. error	ERR strain-	Rel.	Score (%)	Classif.
pant	error of	force-	of strain at	deflection	error of		
no.	F _{max}	deflection	F _{max}	Err_{ε} (%)	deflect.		
	$\Delta F/F$	Err_F (%)	Δε/ε (%)		at F_{max}		
	(%)				$\Delta u/u$		
					(%)		
1	16.12	59.71	22.70	86.05	47.83	36.05	6
2	14.34	62.43	18.60	83.45	49.69	34.83	5
3	18.09	34.06	84.04	77.77	16.15	42.65	10
4	51.88	44.91	2486	60.18	356.5	705.8	32
5	4.417	9.356	201.8	260.9	3.106	79.96	21
6	7.973	89.26	12.45	122.3	69.57	41.96	9
7	41.93	27.09	1824	78.23	136.0	503.0	31
8	32.99	77.10	41.78	54.37	18.63	41.79	8
9	42.55	89.62	86.10	102.7	38.51	65.90	17
10	1.270	6.135	33.56	23.50	4.348	12.76	1
11	83.12	122.0	129.9	59.78	57.76	94.52	24
12a	53.73	35.02	1562	70.48	223.0	455.1	29
12b	34.85	32.26	182.9	80.08	0.000	70.76	19
13	60.80	29.14	1.659e+05	2.020e+04	241.0	4.355e+04	36
14	70.55	23.65	2376	136.3	831.7	760.7	34
15	8.847	53.34	28.99	64.63	23.60	28.35	2
16	13.48	42.25	43.63	57.98	24.84	31.49	3
17	42.22	46.37	92.66	75.46	147.8	74.62	20
18	11.68	21.01	109.7	66.46	23.60	44.86	11
19	42.66	22.38	112.1	29.47	40.37	55.31	14
20	32.98	29.90	226.9	87.49	6.211	82.44	22
21	9.844	27.78	95.48	138.6	18.01	48.04	13
22	28.74	105.5	89.36	90.55	78.88	69.11	18
23	49.19	52.64	93.35	64.81	20.50	58.01	15
24	30.44	14.41	332.8	64.10	24.84	106.2	26
25	66.59	45.88	56.46	59.22	72.05	61.03	16
26	30.34	48.69	49.33	43.07	23.60	38.10	7
27	46.45	38.31	1199	86.52	86.34	343.5	27
28	35.35	31.33	1464	121.5	30.43	399.7	28
29	53.46	58.72	167.1	135.8	9.317	84.27	23
30	41.35	16.64	4040	834.3	167.1	1135	35
31	78.28	30.08	2498	517.3	215.5	740.5	33

Table 2. Predictive performance of the results presented by the participants, shown in random order.

Results of Blind Competition - Simulation of three-point bending of beams with conventional reinforcement and fibres

32	39.16	24.89	90.62	54.91	10.56	47.17	12
33	13.12	7.442	81.23	54.63	3.106	31.95	4
34	42.87	27.05	1.955e+09	1.622e+08	346.6	5.049e+08	37
35	147.5	168.4	966.5	32.34	983.9	469.3	30
36	98.55	99.73	97.34	104.9	99.38	99.18	25

Figure 3 shows the score of participants. Note that the scores of Participants 13 and 34 have been excluded from the graphic, as they are out of the range of results of the remaining participants.

Figure 3. Score of participants

The best score, i.e., the minimum, is 12.76%, which corresponds to Participant 10, Alexander Kagermanov, from the University of Applied Science Rapperswil, Switzerland. Since the organization of this competition did not obtain explicit permission to publicly disclose the classification of now-winner participant by identifying his/her name (or the name of team's members) and corresponding affiliation, those that want to know their classification in the pole should contact directly the organization by email (beatriz.sanz@upm.es).

17 April 2020

Joaquin Antonio Obrein de Barros

Joaquim Barros (Convener)

Beatriz Sanz (Deputy convener)